INORGANIC CHEMISTRY

Total Marks: 32

Max. Time: 35 min.

Topic: Chemical Bonding

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.4	(3 marks, 3 min.)	[12, 12]
Multiple choice objective ('-1' negative marking) Q.5 to Q.6	(4 marks, 4 min.)	[8, 8]
Match the Following (no negative marking) Q.7	(8 marks, 10 min.)	[8, 10]
Subjective Questions ('-1' negative marking) Q.8	(4 marks, 5 min.)	[4, 5]

- 1. Which of the following is ionic solid:
 - (A) XeF_e (s)
- (B) $PBr_s(s)$
- (C) $CaC_{2}(s)$
- (D) All of these

- Which of the following statements are correct: 2.
 - (1) The number of sigma bonds in $CH_2 = C = C = CH_2$ is 7.
 - (2) All the hydrogen atoms in $CH_2 = C = CH_2$ lie in the same plane.
 - (A) Only (1)
- (B) Only (2)
- (C) Both (1) and (2)
- (D) Neither (1) nor (2)
- 3. Match the list-I with List-II and select the correct answer using the codes given below with the lists.

List-I (Compounds)

- (a) XeF_₄
- (b) XeO₃
- (c) XeO₄
- (d) XeO_3F_2
- (A) a iv, b iii, c i, d ii
- (C) a i, b iv, c ii, d iii

List-II (Shape)

- (i) Tetrahedral
- (ii) Square planar
- (iii) Trigonal bipyramidal
- (iv) Pyramidal
- (B) a ii, b iv, c i, d iii
- (D) a ii, b i, c iii, d iv

- 4. Gaseous SO₃ molecule:
 - (A) is planar triangular in shape with three σ bonds from sp² p overlap and three π -bonds formed by two $p\pi - p\pi$ overlap and one $p\pi - d\pi$ overlap.
 - (B) is planar triangular in shape with three σ -bonds from sp² p overlap and three π -bonds formed by one $p\pi - p\pi$ overlap and two $p\pi - d\pi$ overlap.
 - (C) is a pyramidal molecule with one double bond and two single bonds
 - (D) is planar triangular in shape with two double bonds between S and O and one single bond
- 5.* Which of the following is a planar molecule:
 - (A) XeF₄
- (B) NH₃
- (C) BrO₃-
- (D) CℓF₃

- 6.* Identify pairs containing isomorphous species:
 - (A) MgCO₃, NaNO₃
- (B) Na_2CO_3 , Na_2SO_3 (C) $BaSO_4$, $KMnO_4$
- (D) NaNO₃, KClO₃

7. Match the following:

Molecule/ion Hybridisation of central atom (A) 10,F,-(p) sp3d F_sSeO (B) sp^3 (p) (C) CIOF. (r) sp^2 (D) (s) $sp^3 d^2$

8. There will be three different flourine-flourine distances in molecule F₂C=C=C=CF₂. Assuming ideal bond angles for a particular hybridisation (assume no distortion due to double bonds), find out the two smaller flourine-flourine distances (in pm).

(Given that C–F bond length = 134 pm, C = C bond length = 134 pm, $\sqrt{3}$ = 1.7)

Answer Key

DPP No. #14

1. (D)

2.

(C)

3. (B)

4. (B)

5.* (AD)

6.* (AC)

7.

(A - p, B - q, C - p, D - s)

8. 228 pm , 536 pm

Hints & Solutions

DPP No. #14

1. All are ionic solids

XeF₆ (S) consists XeF₅ & F

2. (1) Number of sigma bonds is 7.

(2) Odd number of consecutive double bonds. So, all the hydrogen atoms lie in same plane.

5.*

6.* The compound containing same type of ions having same hybridization & sape is isomorphous to each other.

Species	Hybridisation	Shape	
CO ₃ 2-	sp ²	Trigonal planar	
NO ₃	sp ²	Trigonal planar	
SO ₃ 2-	sp ²	Pyramidal	
SO ₄ 2-	sp ³	Tetrahedral	
MnO ₄ -	sp ³	Tetrahedral	
CIO ₄ -	sp ³	Tetrahedral	

7. (A - p, B - q, C - p, D - s)

 $d_1 = 2 \times 134 \times \sin 60^\circ$ pm = 227.8 pm = 228 pm $d_2 = 134 \times 3 + 2 \times 134 \cos 60^\circ$ pm = 536 pm

